首页 >  , Vol. , Issue () : -

摘要

全文摘要次数: 332 全文下载次数: 302
引用本文:

DOI:

10.11834/jrs.20233036

收稿日期:

2023-02-09

修改日期:

2023-08-14

PDF Free   EndNote   BibTeX
结合对象单元和Transformer网络的 城市功能区分类方法
鲁伟鹏, 贺清康, 李佳铃, 李诗逸, 陶超
中南大学 地球科学与信息物理学院
摘要:

准确识别各类城市功能区并全面掌握其分布情况,对合理规划和科学管理城市至关重要。针对该问题,本文提出一种结合对象单元和Transformer网络的城市功能区分类方法。该方法首先以多尺度分割所获得的过分割对象作为最小分析单元,以避免出现同一分析单元包含多种城市功能区的情况。在此基础上,针对现有方法着重于对分析单元内部特征提取而忽略了分析单元之间的空间关系问题,提出利用Transformer框架和对象地理属性作为位置编码对不同分析单元之间的空间关系进行建模,从而实现兼顾分析单元内部特征和不同分析单元之间空间关系的城市功能区分类。实验结果表明,使用过分割对象作为最小分析单元能够更加准确地获取城市功能区地边界,从而避免基于规则格网单元所导致的锯齿状边缘及基于路网单元所导致地无法区分路网内不同功能区的问题。同时与仅考虑分析单元内部特征的传统方法相比,通过对不同分析单元之间的分析单元进行建模可有效提升城市功能区分类精度。

Object Units and Transformer Networks Combined Urban Functional Zone Classification Method
Abstract:

Accurate extraction of urban functional zones (UFZs) and a comprehensive understanding of their spatial distribution play an important role in urban planning and management. This paper proposes a UFZ classification method combining object unit and Vision Transformer to address the problem. Firstly, this method utilizes the over-segmented object generated from the multi-scale segmentation method as analysis units to avoid that there are multiple kinds of UFZs in an object. Then, considering that current methods always focus on the inherent analysis of objects and ignore spatial relationships among them, Transformer is employed for spatial relationship modeling between objects, in which the geographic attributes of objects act as position embedding. In this way, the inherent features of a single analysis unit and inter-spatial features among objects are both taken into account for UFZ classification. The experimental results show that, compared with the results of the existing methods, the over-segmented objects can improve the boundary accuracy, avoiding the jagged boundaries resulting from grid units and the multi-UFZs in a single unit resulting from road-block units. Besides, the accuracy of UFZ classification increases by 13.9% to the method employing objects as analysis units and ignoring their spatial relationships.

本文暂时没有被引用!

欢迎关注学报微信

遥感学报交流群