下载中心
优秀审稿专家
优秀论文
相关链接
首页 > , Vol. , Issue () : -
摘要

自2013年大气污染防治行动以来,PM2.5、PM10、SO2、NO2等空气污染物浓度都有不同程度下降,但臭氧污染仍有上升趋势,臭氧污染已成为制约我国空气质量持续改善的关键问题。地基站点可以提供空间上特定点的臭氧浓度,但无法获得近地面臭氧连续的空间分布。由于臭氧大量分布于平流层,遥感卫星反演的臭氧柱浓度产品仅能反映整层臭氧柱浓度,但整层臭氧柱浓度与近地面浓度无明显相关性,因而无法体现近地面臭氧浓度。本文综合地基监测数据、再分析资料、卫星产品,采用不同的模型方法,得到近地面臭氧浓度的时空分布,结果表明集成学习方法可以准确估算近地面臭氧在空间上的分布状况和在时间上的变化趋势。本文对比了梯度提升回归树(GBRT)、极端随机树(ERT)、极端梯度提升器(XGBoost)三种不同的集成学习方法在近地面臭氧污染估算的效果表现,三种集成学习方法在2019-2020两年的十折交叉验证R2都在0.89以上,极端梯度提升器(XGBoost)方法在RMSE、MAE指标上有最好的表现,2019年-2020年两年的平均RMSE、MAE分别为15.77μg/m3、10.53μg/m3,且模型训练时间复杂度较低。由于中国政府实施积极的减排措施的及疫情影响,臭氧浓度多年来的上升趋势得到了逆转,2020年臭氧年均值为107.41±18.6μg/m3,较去年平均值109.26±19.71μg/m3,有所减少。时间上,每年的5-9月气温较高,光化学反应剧烈,因而臭氧高污染事件频繁发生。空间上,京津冀地区、长三角地区、珠三角地区、成渝地区等城市群显著高于周围其他区域,是臭氧污染防治的重点区域。
With the successful implementation of the "Air Pollution Prevention and Control Action Plan"(2013-2017) and “Three-year Action Plan to Win the Blue Sky Defense War” (2018-2020), the concentrations of five major pollutants (i.e., PM2.5, PM10, SO2, NO2 and CO), except ozone, significantly dropped for most cities in China. The increasing ground-level ozone concentrations has been a key factor restricting the improvement in the ambient air quality, especially in summer. Compared with the measurements from ground-based monitoring sites, satellite remote sensing technology can obtain spatially continuous total column ozone. However, as ozone is abundantly distributed in the stratosphere, the ground-level ozone has a very low contribution to the total column ozone observed from space, Therefore, the information provided by the satellite total column ozone product is limited for estimating ground-level ozone concentrations. In this study, combined with TROPOMI ozone precursor (NO2 and HCHO) products, ERA5 meteorological parameters and ground-based monitoring data, a machine learning model was developed to estimate daily maximum 8-hour average ground-level ozone concentration over China during the period of 2019 - 2020. By comparing the performance of three ensemble learning methods, i.e., Extreme Gradient Boosters (XGBoost), Extreme Random Trees (ERT) and Gradient Boost Regression Tree (GBRT), the averaged overall 10-fold cross-validation R2 of 2019 and 2020 are all larger than 0.89. Although the estimated results by XGBoost showed the best agreement between model predictions and observations with an averaged RMSE and MAE of 15.77μg/m3 and 10.53μg/m3, respectively, ERT method was finally selected to model the estimation of daily maximum 8-hour average ground-level ozone concentration by considering the rationalization of spatial distribution. Due to the implementation of proactive emission reduction measures carried out by Chinese government, as well as the impact of the COVID-19 epidemic, the rising trend of ozone concentration over the years has been reversed. The annual average value of ground-level ozone concentration in 2020 reached 107.41±18.6μg/m3 over China, which is 1.85μg/m3 less than that 2019(109.26±19.71μg/m3). Sever surface ozone pollution events frequently occur from May to September every year because the high temperature can further promote photochemical reactions. The estimated ground-level ozone concentrations of Beijing-Tianjin-Hebei, Yangtze River Delta, Pearl River Delta and Chengdu-Chongqing regions are significantly higher than their surrounding areas, which are the key areas for ozone pollution prevention and control.