首页 >  , Vol. , Issue () : -

摘要

全文摘要次数: 162 全文下载次数: 341
引用本文:

DOI:

10.11834/jrs.20210251

收稿日期:

2020-07-06

修改日期:

2020-12-19

PDF Free   EndNote   BibTeX
FY-2G卫星红外遥感图像中的震前异常统计分析
乐应波, 陈福春, 陈桂林
中国科学院 上海技术物理研究所 红外探测与成像技术重点实验室
摘要:

红外遥感图像异常是一种重要的地震前兆,需要稳定且有效的提取算法才能发现地震前兆。然而,许多算法只是在少数地震中有验证,数据样本少,不能进行异常信号的统计分析。本文提出了一种方法,对中国及周边地区的红外遥感图像的功率谱异常信号进行统计,以评估算法的准确性和普适性。该方法还分析异常信号的幅度、空间范围和相关的地震信息,将时间和空间上连续的异常点视为一个样本,以计算不同参数条件下异常信号的阳性预测值和地震的真阳性率。本文提取了FY-2G卫星的红外遥感图像中的地震异常信号,并进行统计,得到20.37%的阳性预测值和65.96%的真阳性率。高幅度大范围的异常信号可以达到80%的阳性预测值。对于大于5.4级的地震,真阳性率可以达到81.82%。该方法可以用于分析异常信号的特征和评估异常信号与地震的相关性,有利于算法的对比和改进。

Statistical analysis of pre-seismic anomalies from FY-2G satellite infrared remote sensing images
Abstract:

As an important earthquake precursor, the anomaly from infrared remote sensing images needs stable and effective extraction algorithms. However, many algorithms have been only verified in a few earthquake cases and lack statistical analysis of abnormal signals. In this paper, a method is proposed to estimate the accuracy and universality of the algorithm through statistical analysis of abnormal signals from the power spectrum of infrared remote sensing images in China and surrounding areas. The method not only analyzes the amplitude, coverage of abnormal signals and relevant seismic information but also regards continuous abnormal points in time and space as a sample to calculate the positive predictive value of abnormal signals and the true positive rate of earthquakes with different parameters. Abnormal signals were extracted from FY-2G satellite infrared remote sensing images and statistically analyzed, which get the positive predictive value of 20.37% and the true positive rate of 65.96%. The abnormal signals with high amplitude and wide area have a positive predictive value of 80%. For earthquakes with a magnitude larger than 5.4, the true positive rate can reach 81.82%. This method can be used to analyze the characteristics of abnormal signals and evaluate the correlation between abnormal signals and earthquakes and be beneficial to the comparison and improvement of the algorithm.

本文暂时没有被引用!

欢迎关注学报微信

遥感学报交流群 分享按钮