首页 >  , Vol. , Issue () : -

摘要

全文摘要次数: 221 全文下载次数: 454
引用本文:

DOI:

10.11834/jrs.20210175

收稿日期:

2020-05-25

修改日期:

2021-05-14

PDF Free   EndNote   BibTeX
基于深度卷积神经网络的遥感影像水体识别
王国杰1, 胡一凡1, 张森1, 茹易2, 陈开南1, 吴梦娟1
1.南京信息工程大学 地理科学学院;2.南京信息工程大学 遥感与测绘工程学院
摘要:

从遥感图像中快速准确地提取水体信息对水资源和洪涝灾害监测有重要意义。本文对多维密集连接深度卷积神经网络(DenseNet)进行改进,应用于高分一号卫星数据进行洪泽湖流域的水体识别,并采用多种评价指标,与ResNet、VGG、HRNet等神经网络模型和归一化差异水体指数法(Normalized Difference Water Index,NDWI)等的水体识别结果进行对比。结果表明,ResNet、VGG、HRNet、DenseNet等深度卷积神经网络,在遥感水体识别方面均显著优于传统的水体指数方法。本文在经典的DenseNet网络结构中增加了上采样过程和跳层连接,其水体识别效果明显优于传统的ResNet、VGG等网络结构;DenseNet网络与最新提出的HRNet网络识别的水体区域较为接近,但识别精度指标与训练效率优于HRNet。

Water identification from GF-1 satellite image based on deep convolutional neural network
Abstract:

The rapid and accurate extraction of water information from remote sensing images is of great significance to the monitoring of water resources and flooding disaster. In this paper, we have proposed a network based on the Densely Connected Convolutional Networks (DenseNet), and used GF-1 images to identify water in the Hongze Lake area. A variety of evaluation indexes were used to compare with the water identify results of the classical neural networks of ResNet, VGG, HRNet and traditional water index method (NDWI). The results show that the deep convolutional neural networks of ResNet, VGG, HRNet and DenseNet, are far superior to the traditional water index method in the remote sensing water identify. Based on the classic DenseNet structure, the up-sampling process and the skip connection are added; and the new structure shows significantly improved efficiency in water identification than the traditional ResNet and VGG network structures; the water recognition regin of the DenseNet network is close to the newly proposed HRNet network, but the evaluation indexs and training efficiency are better than HRNet.

本文暂时没有被引用!

欢迎关注学报微信

遥感学报交流群 分享按钮