首页 >  2009, Vol. 13, Issue (2) : 217-223

摘要

全文摘要次数: 4141 全文下载次数: 4439
引用本文:

DOI:

10.11834/jrs.20090241

收稿日期:

修改日期:

PDF Free   HTML   EndNote   BibTeX
基于SL-ICA算法的SAR图像混合像元分解
北京师范大学信息科学与技术学院 北京 100875
摘要:

为解决合成孔径雷达(SAR)图像存在大量混合像元的问题,针对传统ICA不能有效解决混合像元分解这一缺陷,提出一种新的独立成分分析算法--有监督学习ICA算法(SL-ICA).其目标函数是在原ICA负熵目标函数基础上增加监督学习的约束条件项,进而在同一目标函数内实现负熵和约束条件的统一,在最大化负熵的同时也最小化了约束条件的误差,此外,采用一种新的双梯度下降法优化迭代,提高计算速度.并以人工模拟SAR图像和北京地区ENVISAT-ASAR作为数据源进行实验,实验结果明显优于主成分分析方法(PCA)的分解结果.

Decomposition of SAR images'' mixed pixels based on supervised learning ICA algorithm
Abstract:

Forresolving theproblem thatthere are lotsofmixed pixels in the Synthetic Aperture Radar(SAR) images, againstthe flaw that the traditional Independent Component Analysis(ICA) can not solve the decomposition ofmixed pixels effectively, we propose a new algorithm: Supervised Learning ICA algorithm(SL-ICA). Adding supervised learning restrictive conditions to the negentropy objective function, we implementnegentropy and restrictive conditions in a unified objective function, which minimizes the errorwhilemaximizing the negentropy. At the same time, we optimize the objective function using a new dual-gradientdescent algorithm iteratively, which accelerates the computing speed. By testing SL-ICA and PrincipalComponentAnalysis (PCA).on artificial simulated SAR images and ENVISAT-ASAR (Advanced Synthetic Aperture Radar) images ofBeijing, the results show that SL-ICA can getmore precise results than the PCA.

本文暂时没有被引用!

欢迎关注学报微信

遥感学报交流群