首页 >  2003, Vol. 7, Issue (5) : 407-411

摘要

全文摘要次数: 3873 全文下载次数: 20
引用本文:

DOI:

10.11834/jrs.20030511

收稿日期:

2002-06-16

修改日期:

2003-01-13

PDF Free   HTML   EndNote   BibTeX
基于支持向量机的SPIN-2影像与SPOT-4多光谱影像融合研究
南京大学城市与资源系,江苏南京210093
摘要:

遥感影像融合是解决多源海量数据富集表示的有效途径之一。针对高分辨率遥感数据SPIN-2(2m)与多光谱遥感数据SPOT-4(20m)的影像融合,提出了基于支持向量机(SVM)的遥感影像融合的新方法。建立了基于SVM的遥感影像融合模型,并进行了分类融合实验,实验效果较好。最后给出了分类融合评价。结果表明,支持向量机可用于遥感影像融合,且分类融合精度较高。

SPIN-2 Panchromatic and SPOT-4 Multi-Spectral Image Fusion Based on Support Vector Machine
Abstract:

Remote Sensing image fusion is an effective way to use the large volume of data from multi-source images.This paper introduces a new method of remote sensing image fusion based on support vector machine (SVM), using high spatial resolution data SPIN-2 and multi-spectral remote sensing data SPOT-4.First the new method is established by building a model of remote sensing image fusion based on SVM.Then using SPIN-2 data and SPOT-4 data, to test image classification fusion.Finally, an evaluation of the fusion result is made in two ways: (1)From subjectivity assessment, the spatial resolution of the fused image is improved compared to the SPOT-4, and it is clearly that the texture of the fused image is distinctive; (2)From quantitative analysis, the effect of classification fusion is better.As a whole, the result shows that the accuracy of image fusion based on SVM is high and the SVM algorithm can be recommended for application in remote sensing image fusion processes.

本文暂时没有被引用!

欢迎关注学报微信

遥感学报交流群